

An Experiment in Ocean Acidification: Why Buffering Matters

Deceptive Exercises in Ocean Acidification

dissolving seashells experimentSearch Images (bing.com)

K-12 education material promote alarm that our oceans are becoming dangerously acid because of CO2 emissions from burning fossil fuels

This requires ignoring the impact of buffering

Quote from 8th Grade Climate Science Literature

"The ocean acts as a carbon sink in the carbon cycle, absorbing atmospheric carbon and storing it in an aqueous solution in the seawater, which can lead to the effect of ocean acidification. Ocean acidification has a negative effect on many marine species, especially those that make hard shells. In more acidic water, it is more difficult for these organisms to build shells, and the water can even cause shells to begin to dissolve."

Quote from 8th Grade Climate Science Literature

"The ocean acts as a carbon sink in the carbon cycle, echberic carbon and storing it in an aqueous absorbi solution plead to the effect of ocean acidifica gative effect on many marine species, espe that make hard shells. In more acidic water, it is more difficult for these organisms to build shells, and the water can even cause shells to begin to dissolve."

Ocean Health – Is there an "Acidification" problem?

Example of experimental misdirection

Modeling Carbon Absorption in the Ocean

Intent: "Build and Observe a physical model of carbon emission and absorption in the

Ocean"

Materials

- > Antacid tablets (2)
- > 500 ml beakers (3)
- ➤ Bromothymol blue indicator solution in dropper bottle
- > Container, large, sealable lid
- Graduated cylinder, 500 ml
- > Marker
- > Tape, masking
- > Water, distilled or tap

Example of Materials of experiment

Example of experimental misdirection

Modeling Carbon Absorption in the Ocean

Intent: "Build and Observe a physical model of carbon emission and absorption in the

Ocean"

FIRE

Materials

> Antacid tablets (2)

> 500 ml beakers (3)

Bromothymol blue indicator solution in dropper bottle

Container, large, sealable lid


Graduated cylinder, 500 ml

Marker

Tape, masking

Water, distilled or tap

water, distilled or tap

Reviews of Geophysics

REVIEW ARTICLE

10.1029/2019RG000681

Ocean Alkalinity, Buffering and Biogeochemical Processes

Jack J. Middelburg¹ D, Karline Soetaert² D, and Mathilde Hagens³ D

"Seawater is a solution with multiple weak acids and bases in contact with both the atmosphere and sediments containing minerals that have the potential to react when solution composition or physical conditions change. Seawater is consequently well buffered..."

An annual increase in atmospheric CO2 of 2.1 ppm/yr. \rightarrow a pH decrease of ~ 0.0023 units/yr.

pH of Ocean Water (Alkalinity 2.3X10⁻³ M, 25 ^oC)

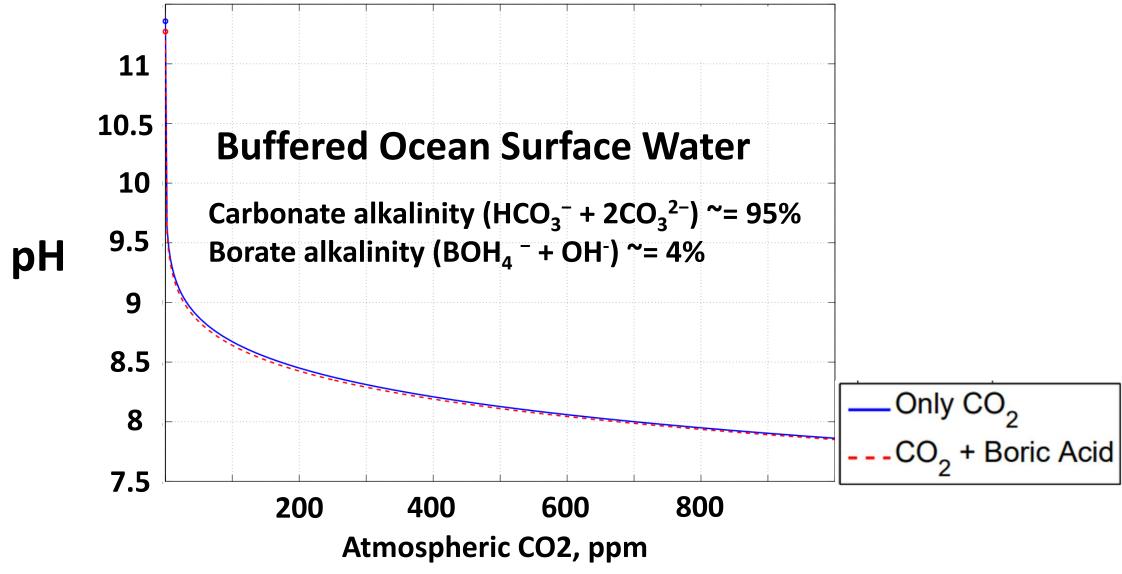


Figure from Fundamentals of Ocean pH, R. Cohen and W. Happer, Sept. 18, 2015

Example of experimental misdirection

Ignoring perspective

A point is often made that about 25% of CO2 emissions from burning of fossil fuels end up dissolved in the ocean. There is no attempt to quantify this amount and to compare it to natural emissions, i.e.,

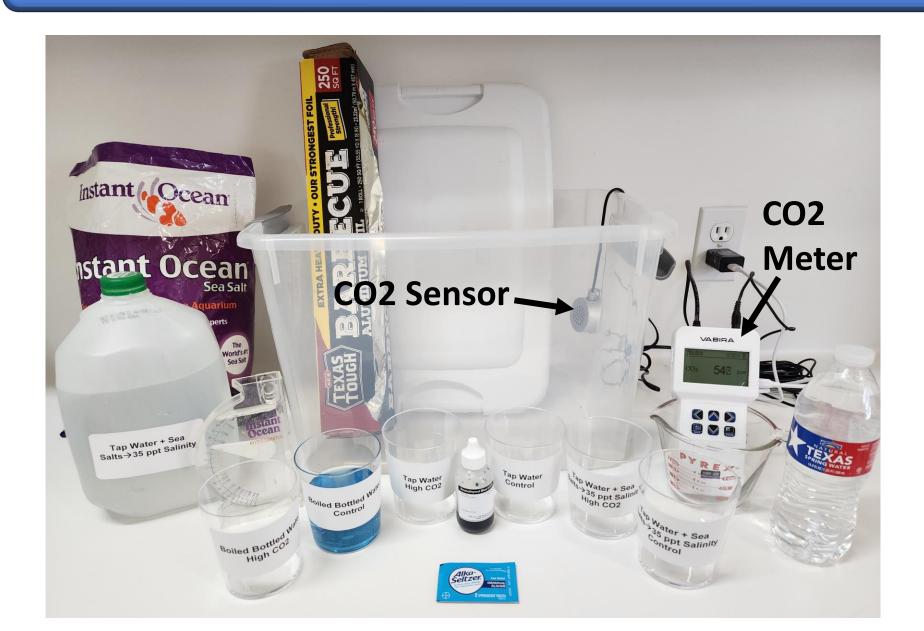
25% = ~8.15 Gt of 293.3 Gt or ~2.8% of CO2 annually absorbed by oceans

How Added Fossil Fuels Affect the Carbon Cycle Atmosphere 589 + 240 ±10 (average atmospheric increase: 4 (PgC yr⁻¹)) = 60 + 20 weathering Rivers Surface ocean 900 Vegetation 450-650 Permafrost Soils 1500-2400 Dissolved ~1700 Intermediate Fossil fuel reserves Gas: 383-1135 Oil: 173-264 Units Fluxes: (PgC yr⁻¹ Stocks: (PgC) 0.2 Ocean floor surface sediments 1,750

CO2 Emissions, GT/Year Oceans 291.1 38.3% Respiration/Decay 435.2 57.2% Volcanos/Rock Weathering 0.2% 1.5 **Total Natural** 727.8 95.7% Fossil Fuels & Cement 28.6 3.8% Land Use Change 4 0.5% Total Anthropogenic 32.6 4.3% Total CO2 **Emissions** 100.0% 760.4

CO2 Sin	ks, GT/Yea	r
Oceans	293.3	39.4%
Photosynthesis	451.0	60.6%
Total	744.3	100.0%

Figure 1 The Global Carbon Cycle from IPCC CLIMATE CHANGE 2013: The Physical Science Basis - figure 6.1, p. 471


Example of experimental misdirection

Quote from 8th Grade Climate Science Literature

"Propose a solution to help reduce the effect of carbon emissions on the ocean. Support your solution with observations or data from your model."

Solution to a false problem led by a deceptive experiment!

Ocean "Acidification" of Buffered Sea Water

Materials

- ✓ Sea salts
- ✓ Bottled water
- ✓ Tap water
- **✓** Hydrometer
- ✓ Six 8-oz clear cups
- ✓ Measuring cup
- ✓ Antacid tablets
- ✓ Bromothymol blue
- ✓ CO2 meter
- ✓ Labels
- ✓ Gallon jug
- ✓ Translucent container with sealable lid
- ✓ Aluminum foil*

* Placing a sheet of foil between the container and lid will better seal and preserve high CO2 level

Step 1

Step 2

Prepare a solution of sea water by adding $^{-1}/_2$ cup of aquarium sea salts to a gallon jug, then fill the jug with bottled water. Using a hydrometer, adjust the salt content to 35 ppt salinity.

Label each cup:

- > Tap Water Control
- ➤ Tap Water High CO2
- Boiled Bottled Water Control
 - ➤ Boiled Bottled Water High CO2
 - ➤ Tap Water + Sea Salts → 35 ppt Salinity Control
 - ➤ Tap Water + Sea Salts → 35 ppt Salinity High CO2
- Step 3 Boil and cool bottled water to remove residual carbonization
- Step 4 Add 200 ml of the appropriate water to each cup
- Step 5 Add 30 drops of bromothymol blue to each cup and stir to mix.

Step 3

Bottled spring water is likely to have some degree of natural carbonization, and must be stabilized by degassing under open air as shown here, or by boiling and then cooling (next slide)

Time after adding bromothymol blue to bottled water (before exposure to elevated CO2.)
Hill Country Fair Texas Spring Water pH 6.9, alkalinity 53 in CaCO3 units.

Photo from <u>Bromothymol blue colors at</u> <u>different pH - Bromothymol blue - Wikipedia</u>

Step 3

Boil bottled spring water to remove residual carbonization, and cool to room temperature.

From bottle

After boiling

Initial color of 200 ml Bottled Water with 30 drops bromothymol blue

Photo from <u>Bromothymol blue colors at</u> <u>different pH - Bromothymol blue - Wikipedia</u>

Step 6

Record the color of the three solutions at the start of the experiment with the bromothymol blue color chart

					Water Type		
				Hill Country Fare Distilled Water	Hill Country Fare Purified Drinking Water	Hill Country Fare Texas Spring Water	
Substance	Units	MRL*	MCL**	Level Found***	Level Found***	Level Found***	
Physical Quality							
Alkalinity in CaCO3 units	mg/L	2	NR	30	9	53	
Apparent Color	ACU	3	15	ND	ND	ND	
Specific Conductance, 25 C	umho/cm	2	1600	ND	46	137	
Total Hardness	mg/L CaCO3	3	NR	ND	8	54	
Odor at 60 C	TON	1	3	1	1	1	
Total Dissolved Solids (TDS) ♦	mg/L	10	500	ND	33	95	
Turbidity	NTU	0.1	5	ND	0.1	0.1	
PH ♦	Units	0.1	NR	5.8	6.7	6.9	
Bicarb.Alkalinity	mg/L HCO3	2	NR	36	11	63	

Step 7

Record the ambient air CO2 content in the room. Because human breath will increase the CO2 reading, this is best done before the room is filled with students.

Step 8

Position the sensor of the CO2 meter on an inside wall of the container

Step 9

Place the three cups labeled "High CO2 and the measuring cup filled with ~200 ml of tap water inside the container. Add two antacid tablets to the water-filled measuring cup.

Step 10

Place a sheet of aluminum foil over the container, then cover with the lid and lock in place; this will provide a tighter seal and preserve elevated CO2 at >5,000 ppm for at least ten hours

Step 10

Placing a sheet of aluminum foil over the container before adding the lid will provide a tighter seal and preserve elevated CO2 at >5,000 ppm for at least ten hours.

Start of Experiment

CO2 Probe

pH 2.1

pH 6.4

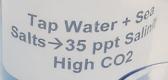
pH 6.7

pH 6.9

pH 7.0

pH 7.4

pH 8.1


pH 12.5

2 Alka-Seltzer Tablets Pegged the Meter at > 11.9 times Ambient

Ambient Room Air

Container (2 antacid tablets)

4 Hrs. at >5,000 ppm CO2

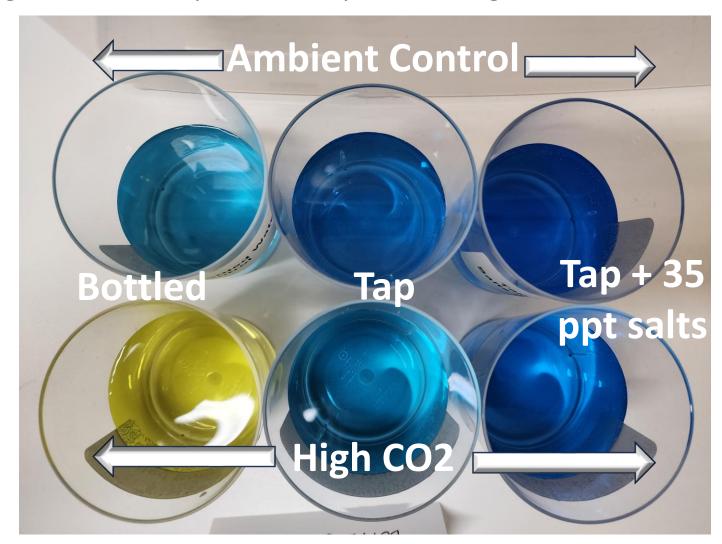
Step 11

24 Hrs. at >5,000 ppm CO2

Step 11

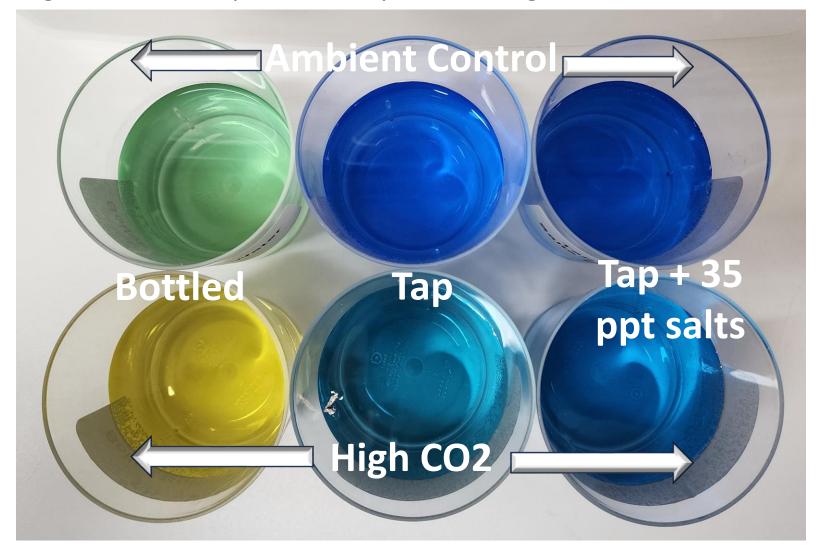
48 Hrs. at >5,000 ppm CO2

Step 11



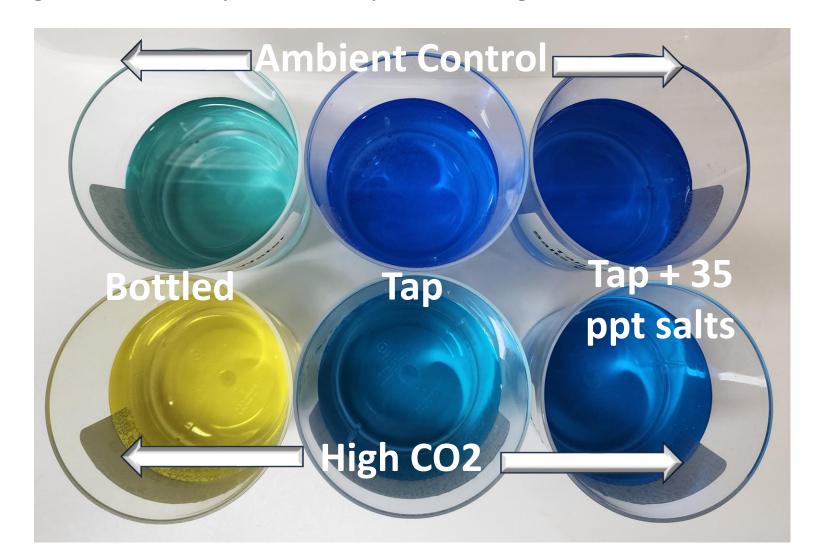
4 Hrs. at >5,000 ppm CO2

Step 11



24 Hrs. at >5,000 ppm CO2

Step 11



48 Hrs. at >5,000 ppm CO2

Step 11

24 Hrs. at >5,000 ppm CO2

Step 11

48 Hrs. at >5,000 ppm CO2

Step 11

Step 11

Note change of color of specimen exposed to high CO2 level

Step 12

After two days, observe the color shift of specimen removed from a high CO2 environment

24 hrs exposure to > 5,000 ppm CO2 + 34 hrs ambient

Conclusions

- The "textbook" experiment falsely equates tap and distilled water to buffered ocean water
- ➤ After 48 hours, >Ten times atmospheric CO2
 - did not noticeably shift the pH of tap water buffered with sea salts
 - > slightly decreased the basic pH of tap water
 - >shifted the pH of unbuffered bottled water from slightly basic to acid.
- ➤ The pH of bottled water exposed to >5,000 ppt CO2 shifted to slightly basic after return to ambient air.

Conclusions

- The concept of buffering is ignored by education material of major publishers; students are misled.
- > "Textbook" mention of the CO2 level generated by antacid tablets is avoided. This level is beyond the possible amount from burning all fossil fuel reserves.
- ➤ Education material from leading publishers misdirect students on ocean acidification potential and harm to aquatic life.

Conclusions

Buffering Matters

Our CO₂ emissions are not endangering sea life