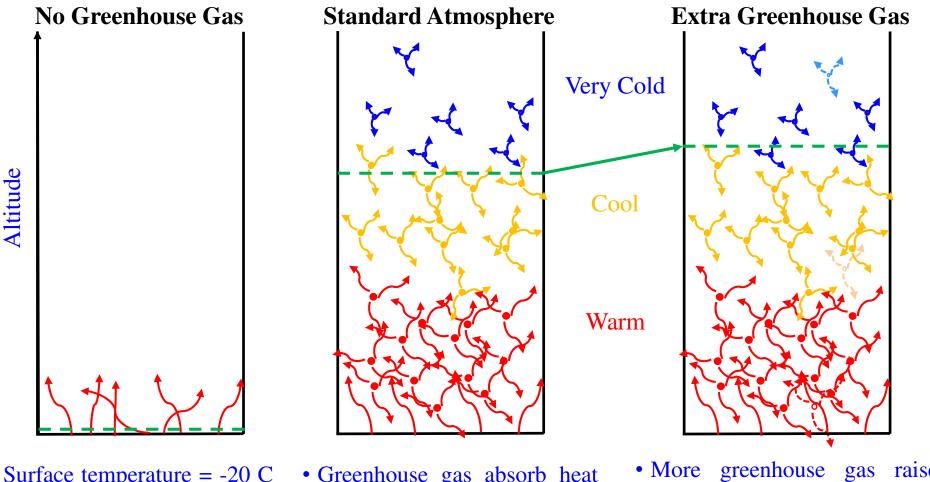
The Latest Climate Science Good News for Irish Agriculture!

Dublin, November 14, 2023

W. A. van Wijngaarden York University, Toronto, Canada

www.wvanwijngaarden.info.yorku.ca


Greenhouse Gas Molecules

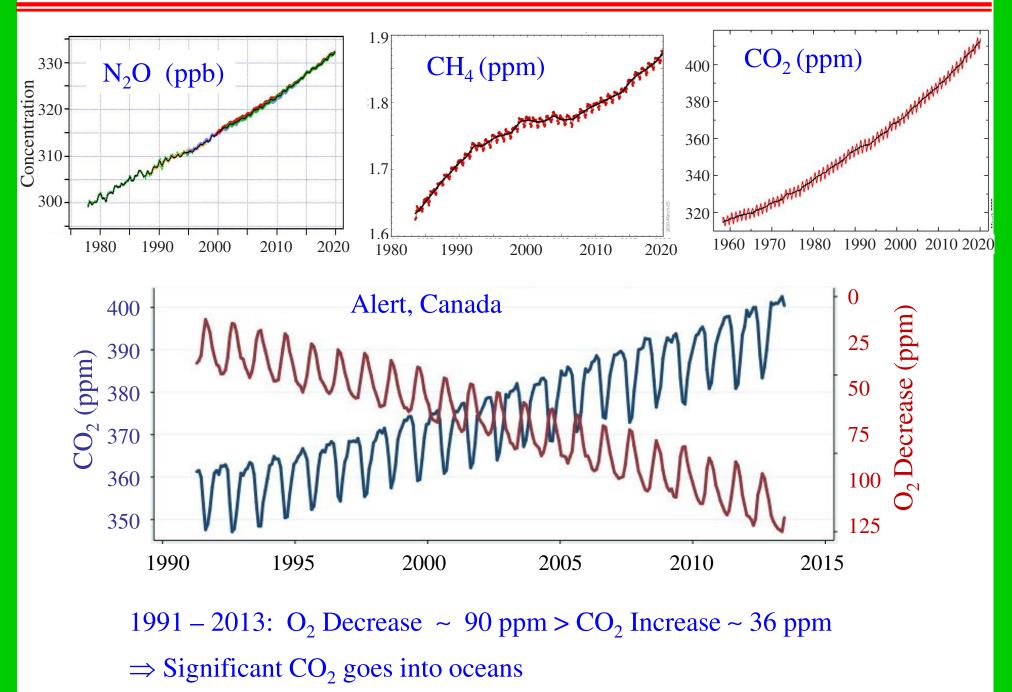
WvW & WH, Greenhouse Gas Primer, Atmos. & Oceanic Phys, "arXiv: 2303.00808v1 (2023)

- Earth's surface & atmosphere radiates heat or infrared radiation.
- Greenhouse gases such as H₂O, CO₂, O₃, N₂O & CH₄ transmit sunlight but absorb various infrared colours.
- Our work calculates transmission of infrared radiation through atmosphere to outer space.

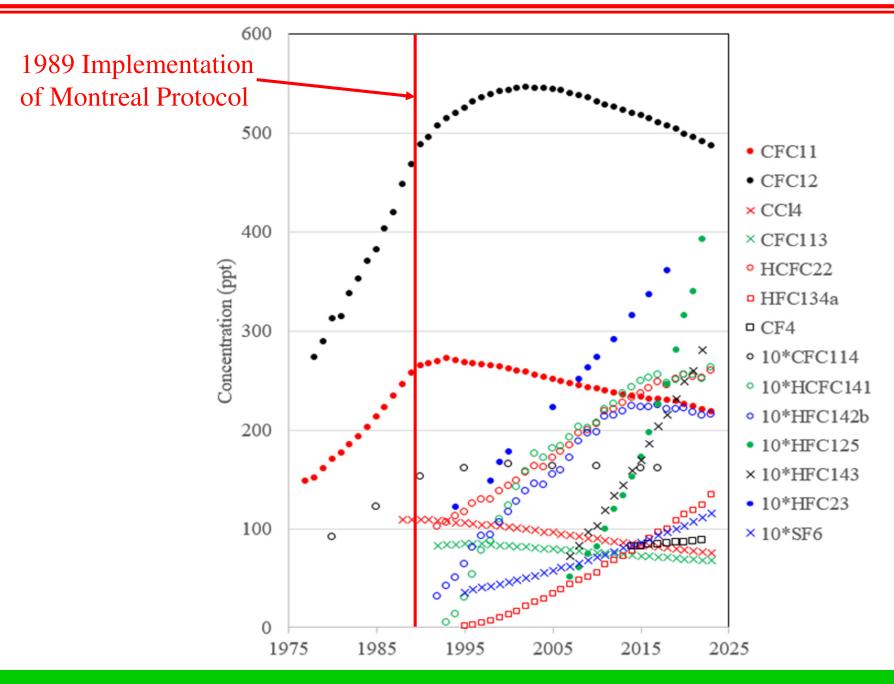
What is Greenhouse Effect?

- Surface temperature = -20 C with no atmosphere
- Heat from surface escapes to space given by dashed green line
- Greenhouse gas absorb heat & radiate in all directions causing surface to warm
- Heat escapes to space at altitude where gas density is too low for absorption
- More greenhouse gas raises escape altitude
- Higher molecules are colder & radiate less heat to space
- Radiative Forcing = Incoming Solar Energy – Radiated Heat causes greenhouse warming

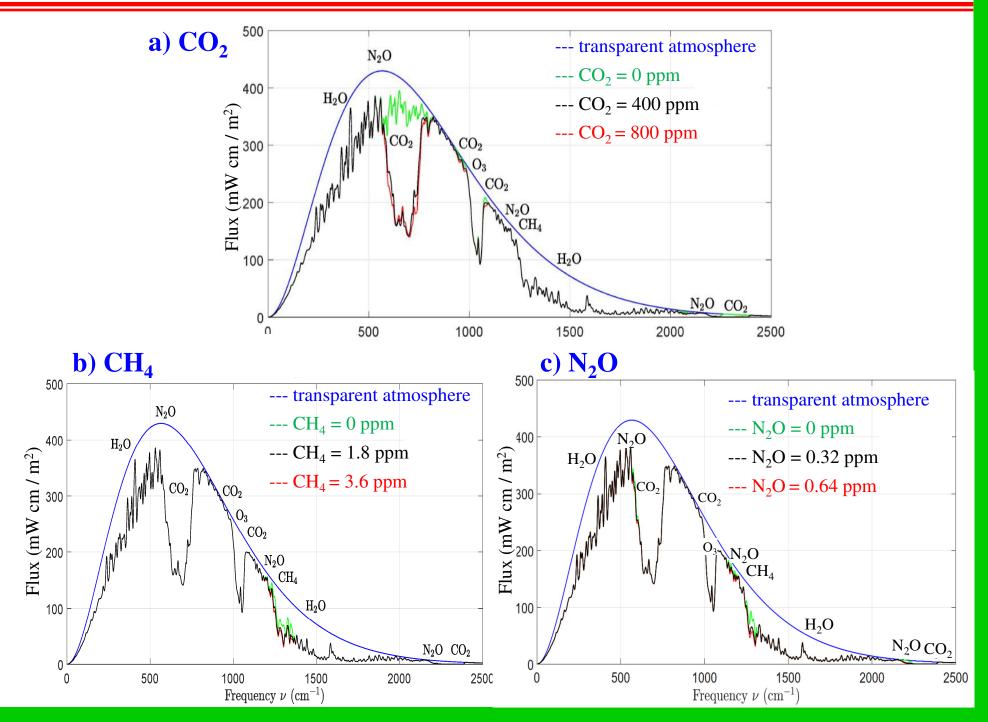
Atmosphere


G. Anderson et al, Air Force Geophys. Lab., Mass. (1986)

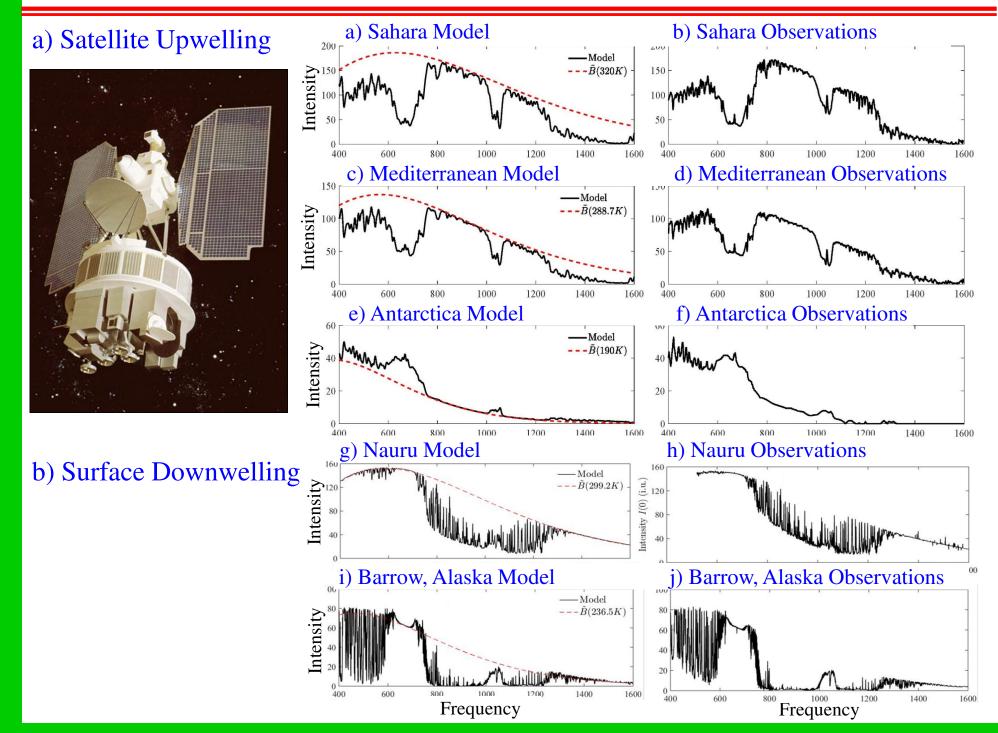
Surface Concentrations (ppm): $H_2O = 7750$, $CO_2 = 400$, $N_2O = 0.32$ $CH_4 = 1.8$, $O_3 = 7.8$ at 35 km


Increase in Greenhouse Gases

www.esrl.noaa.gov and scrippso2.ucsd.edu

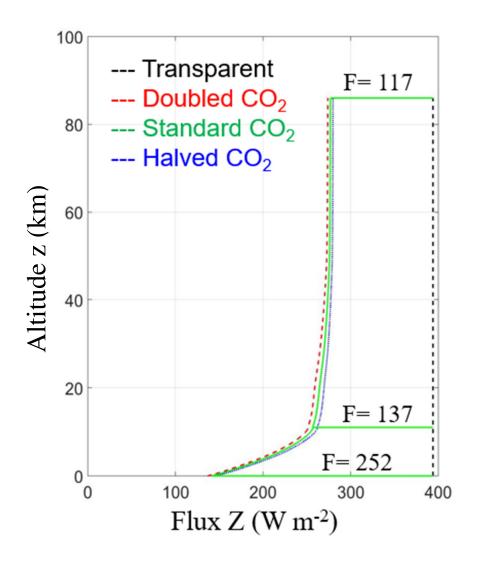

Increase in Halogenated Greenhouse Gases

WvW & WH, Inst. Clear Sky Rad. Forcings of Halogenated Gases, Atmos. & Oceanic. Phys. arXiv: 2306.13642 (2023)



Top of Atmosphere Flux

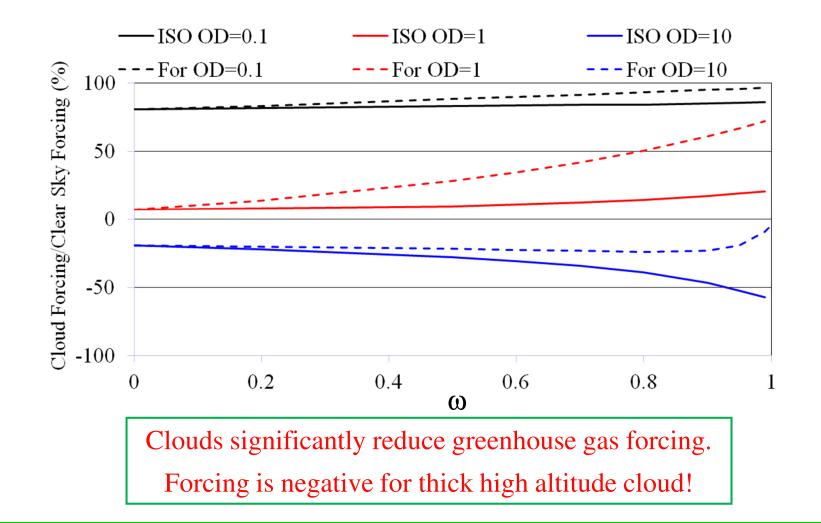
WvW & WH, Atmos. & Oceanic Phys. arXiv: 2006.03098 (2020)



CLEAR SKY Model Comparison to Observations

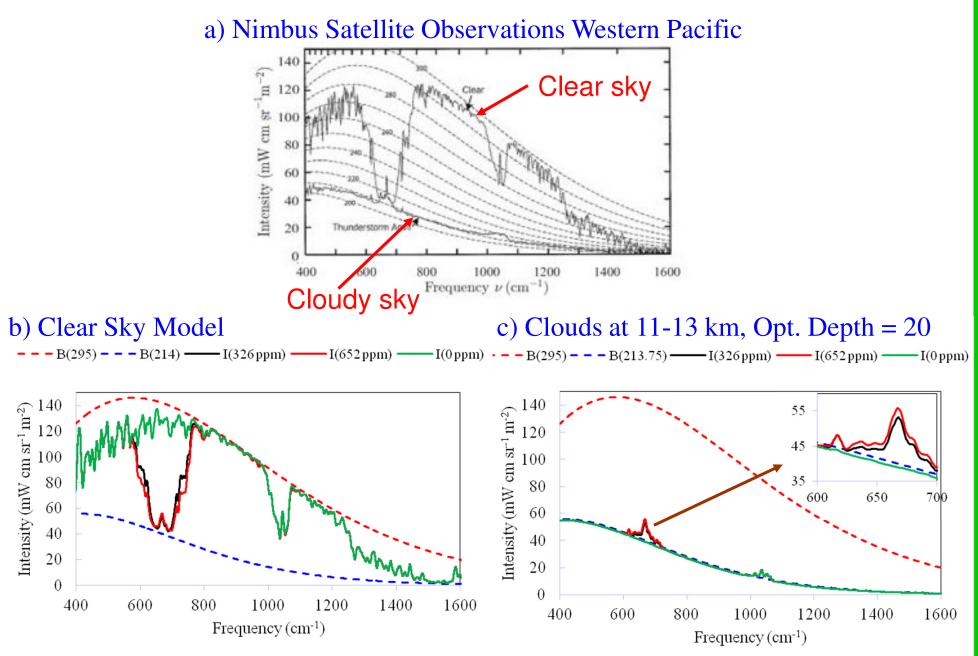
Frequency Integrated Flux vs. Altitude

WvW & WH, Atmos. & Oceanic Phys arXiv: 200603098 (2020)


Greenhouse	Forcing (W/m ²)			
Gas Increase	Collins*	This Work		
+6% H ₂ O	1.1	0.7		
2 x CO ₂	2.8	3.0		
$2 \ge N_2O$	1.2	1.1		
2 X CH ₄	0.6	0.7		
+10% O ₃		0.3		

*W. Collins et al, J. Geophys. Res. 111, D14317 (2006)

Forcing = $Flux(CO_2) - Flux(2*CO_2)$ = 3.0 W / m²


Preliminary Work: Effect of Cloud Layer at 11 km on TOA Forcing due to Doubling CO₂

- Cloud layer with optical depth (OD) scatters with single scattering albedo (ω)
- Scattering is isotropic (ISO) or strongly in forward (FOR) directions

Effect of Thick Clouds – Western Pacific

WvW & W. Happer, 2n-Stream Therm. Emis. from Clouds, Atmos. & Oceanic Phys. arXiv: 2301.08129 (2023)

Clear Sky 2 x CO₂ Forcing = +3.15 W/m²

Cloudy Sky 2 x CO₂ Forcing = -0.58 W/m²

Clouds & Climate Change

- Clouds cover about 70% of Earth
- Climate effect highly uncertain & reason why IPCC warming estimate due to CO₂ doubling not improved

IPCC Report	Climate Sensitivity (C)
1990	1.5 - 4.5
1996	1.5 – 4.5
2001	1.5 – 4.5
2007	2.0 - 4.5
2014	1.5 – 4.5
2021	2.5 - 4.0

• Radiative forcing due to doubling $CO_2 = 3 \text{ W/m}^2$ about 1% of heat flux to space. This could be compensated for by small changes in cloud thickness, altitude etc.

Le Chatelier: When system at equilibrium subjected to change in concentration, temperature, volume or pressure, system changes to new equilibrium & this change partly counteracts applied change.

Global Warming Potential

C. de Lange, J. Ferguson, WH & WvW, Nitrous Oxide & Climate, Atmos & Oceanic Phys arXiv 2211.15780 (2022)

Introduced by IPCC in attempt to show warming of greenhouse gas relative to CO₂.

GWP_i(T) =
$$\frac{P_i / m_i}{P_{co2} / m_{co2}} \frac{\Theta_i(T)}{\Theta_{co2}(T)}$$
 where $\Theta_i = \int_0^T e^{-t/\tau_i} dt$

 $P_i = \underline{\text{clear sky}}$ forcing in W/m² divided by column density # molecules/m² of gas i $m_i = \text{mass of molecule i}$

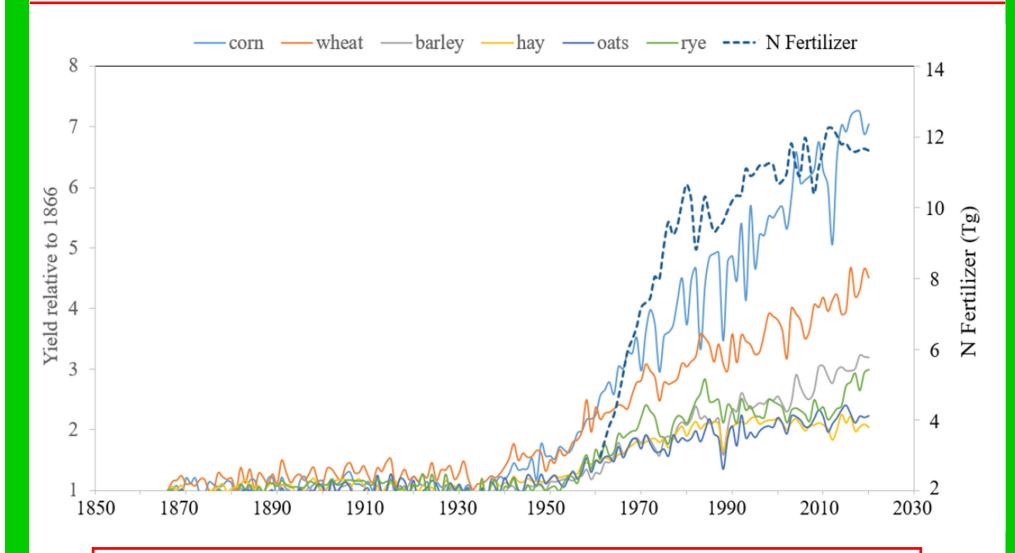
 τ_i = atmospheric lifetime of molecule i

P_i m_i		τ_i	This Work			IPCC 2022		
Gas	$\overline{P_{co2}}$	(amu) (yr)		GWP(0)	GWP(20)	GWP(100)	GWP(20)	GWP(100)
CO ₂	1	44	**	1	1	1	1	1
CH ₄	31	16	12	85.5	53.9	19.2	83 ± 26*	30 ± 11*
N ₂ O	233	44	109	233	279	290	273 ± 118	273 ± 130

**Multiple lifetimes due to various CO₂ removal processes *Includes indirect effects of CH₄ oxidizing products CO₂ & H₂O

Greenhouse Gas Contribution to 21st Century Warming

WvW & WH, Instantaneous Clear Sky Rad. Forcings of Halogenated Gases", Atmos. & Oceanic Phys, arXiv: 4971146 (2023)

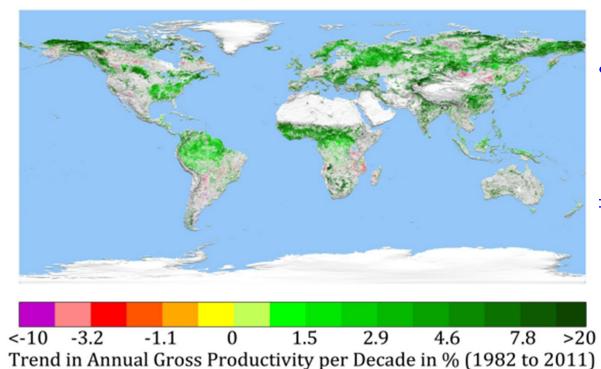

Assumptions

- 1. Greenhouse gas increase at observed 2000-2020 rates
- 2. Same warming in 21^{st} century as in 20^{th} century ~ 1 K/century
- All warming due to greenhouse gas increase
 i.e. Neglect all other effects such as warming due to end of Little Ice Age
- 4. Greenhouse gas warming proportional to its <u>clear sky</u> forcing increase

Gas i	C ⁱ (ppm)	$\frac{dC^i/dt}{dC^{CO2}/dt}$	$\frac{P_i}{P_{co2}}$	$\frac{\partial \boldsymbol{T}^{i}}{\partial \boldsymbol{t}}$ (K/Century)
CO ₂	410	1	1	0.834
CH ₄	1.9	$\frac{1}{312}$	31	0.083
N ₂ O	0.34	$\frac{1}{3125}$	233	0.062
Halogenated Gases				0.021
				$\sum_{i} \frac{\partial T^{i}}{\partial t} = 1.0$

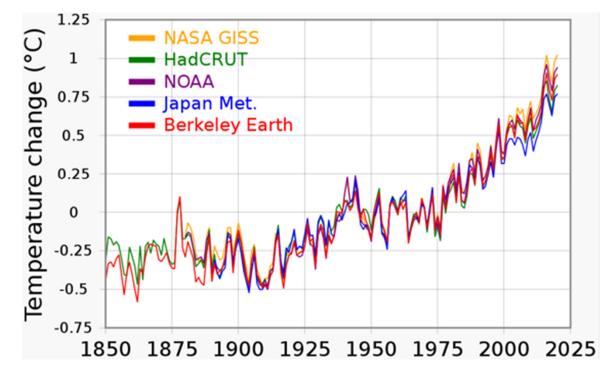
Effect of N Fertilizer on Crop Yield

US Crop Yields www.nass.usda.gov/Publications/Todays_Reports/croptr19


Outlawing fertilizer use to stop atmospheric N_2O increase threatens world food supply and reduces temperature rise by < 0.1 C per century!

Vegetative Response

Greening Earth: Spatial Patterns


 Increased growth may reduce rate of CO₂ increase C. Idso, Energy & Env. 12, No. 4, 287 (2001)

- More CO₂
- ⇒ smaller stomata reducing water loss
- ⇒ easier for plants to grow in arid regions
 Z. Zhu et al, Nature Climate Change 7, 791 (2016)

Global Average Surface Temperature

Warming $\Delta T = S \operatorname{Log}_2 C/C_0$ where $C = CO_2$ concentration at time t $C_0 = \text{original } CO_2$ concentration

Interval	$\Delta T_{obs}(C)$	CO ₂ (ppm)	S _{calc} (C)	S _{IPCC 2021} (C)
1905 - 1940	0.5	298 - 311	8	
1940 – 1980	0	311 – 339	0	2
1980 - 2000	0.5	339 - 370	4	3
2000 - 2016	0	370 - 404	0	

- Global Climate Models failed to predict 2000 – 2016 hiatus.
- There is more going on than just CO₂!

Conclusions

• Extrapolating observed warming of 1 C since 1850 to 21st century & using clear sky forcings which are higher than when cloud effects are considered gives:

Gas	Global Warming C / Century	Irish Emissions Fraction	Irish Warming C/Century
CO_2	0.83	1.1 x 10 ⁻³	9.0 x 10 ⁻⁴
CH_4	0.08	1.6 x 10 ⁻³	1.3 x 10 ⁻⁴
N ₂ O	0.06	1.9 x 10 ⁻³	1.2 x 10 ⁻⁴
Total Warming	1.0		0.0012

- Evidence doesn't support hysteria about: droughts/floods, polar ice/glacier retreat, sea level rise, ocean acidification, forest fires etc.
 - WvW, Impact of Changing Greenhouse Gas Conc. on Ontario's Climate, Atmos. & Oceanic Phys arXiv: 2305.05500 (2023) wvanwijngaarden.info.yorku.ca
 - US Farmers Defy a Scorching Summer to Grow Record Crop, climatedepot.com
 - Outlawing fertilizers negligibly affects climate & endangers global food supply
 - Beware of unintended consequences. eg. Replacing food produced efficiently by Irish farmers with that grown in Brazil will destroy Amazonian rainforest
 - World not close to climate crisis in < 10 or even 100 years