20 More New Papers Link Solar Forcing To Climate Change – Now 80 Sun-Climate Papers For 2017

Since 2014, 400 Scientific Papers Affirm A Strong Sun-Climate Link

201780 Scientific Papers Linking Solar Forcing To Climate

2016133 Scientific Papers Linking Solar Forcing To Climate

201595 Scientific Papers Linking Solar Forcing To Climate

201493 Scientific Papers Linking Solar Forcing To Climate

The 20 Latest Sun-Climate Papers

“We confirm the occurrence of upcoming Modern grand minimum in 2020-2053 … [and] extremely incorrect prediction of the terrestrial temperature growth in the next century.” – Zharkova et al., 2017
1.     Gray et al., 2017     There are several proposed mechanisms through which the 11-year solar cycle (SC) could influence the Earth’s climate, as summarised by Figure 1. These include: (a) the direct impact of solar irradiance variability on temperatures at the Earth’s surface, characterised by variation in the total incoming solar irradiance (TSI); (b) the indirect impact of variations through the absorption of Ultra-Violet (UV) radiation in the upper stratosphere associated with the presence of ozone, with accompanying dynamical responses that extend the impact to the Earth’s surface; (c) the indirect impact of variations in energetic particle fluxes into the thermosphere, mesosphere and upper stratosphere at high geomagnetic latitudes; and (d) the impact of variations in the generation of ions by galactic cosmic ray (GCR) penetration into the troposphere. Although different in their nature, these four pathways may not work in isolation but their influence could be synergetic.”

2.     Zharkova et al., 2017     “Using a summary curve of two eigen vectors of solar magnetic field oscillations derived with Principal Components Analysis (PCA) from synoptic maps for solar cycles 21-24 as a proxy of solar activity, we extrapolate this curve backwards three millennia revealing 9 grand cycles lasting 350-400 years each. The summary curve shows a remarkable resemblance to the past sunspot and terrestrial activity: grand minima – Maunder Minimum (1645-1715 AD), Wolf minimum (1280-1350 AD), Oort minimum (1010-1050 AD) and Homer minimum (800 900 BC); grand maxima – modern warm period (1990-2015), medieval warm period (900-1200 AD), Roman warm period (400-10 BC) and others. We verify the extrapolated activity curve by the pre-telescope observations of large sunspots with naked eye, by comparing the observed and simulated butterfly diagrams for Maunder Minimum (MM), by a maximum of the terrestrial temperature and extremely intense terrestrial auroras seen in the past grand cycle occurred in 14-16 centuries.”
We confirm the occurrence of upcoming Modern grand minimum in 2020-2053, which will have a shorter duration (3 cycles) and, thus, higher solar activity compared to MM [Maunder Minimum]. … One of the examples of fitting incorrectly the oscillating function with a linear regression approach is shown by Akasofu (2010) (see her Fig. 9), when explaining the modern era recovery of the Earth from the little ice period and the incorrect use of a linear part of the temperature variations for the extremely incorrect prediction of the terrestrial temperature growth in the next century.”

3.     Harde, 2017     [A] naturally generated [CO2 emission] contributes more than 95% to the overall emission, and its generation rate and the respective absorption rate sensitively respond on global temperature variations. … [The] well known delayed response of CO2 and methane (CH4) to sea and air temperature changes (see, e.g., Petit et al. [2]; Monnin et al. [3]; Caillon et al. [4]; Torn and Harte [5]; Humlum et al. [6]; Salby [7]) are not considered in AR5. … As long as any natural variations in the CO2 concentrations are not accurately known, the ECS [equilibrium climate sensitivity to CO2 doubling] cannot be used as a reliable indicator only for an anthropogenic global warming.”
The IPCC denies any noticeable solar influence on the actual climate, although strong evidence of an increasing solar activity over the last century exists (see, e.g., Hoyt & Schatten [8]; Willson & Mordvinov [9]; Shapiro et al. [10]; Ziskin & Shaviv [11]; Scafetta & Willson [12]; Usoskin et al. [13]; Zhao & Feng [14]; Soon et al. [15]). … From these studies we conclude that the measured temperature increase of 0.74∘ C over the time 1880–2000 and the observed cloud changes of −4% over the period 1983– 2000 can best be explained by a cloud feedback mechanism, which is dominated by the solar influence. Therefore, it seems quite reasonable to use a model mean of [climate sensitivity to doubled CO2] = 0.7°C, yielding a CO2 initiated warming of 0.3°C [1880-2000] and a solar contribution of 0.44°C [1880-2000].”

4.    Pande et al., 2017     “Ozone is a highly reactive, naturally occurring ingredient of the stratosphere that is produced from oxygen by sunlight.  It is one of the most important chemicals in both the stratosphere and troposphere.  Apart from absorbing the harmful ultaviolet radiation from the sun, it [ozone] also plays an important role in determining earth’s climate.  Solar variability affects ozone through radiative heating in atmosphere.  Solar UV radiation is absorbed by atmospheric ozone.  It is responsible for both the creation and destruction of ozone.  … The total ozone was found to be enhanced during magnetically disturbed conditions which are associated with peak solar activity periods.  Angell and Korshover (1976) concluded that there is nearly in-phase relationship between sunspot number and total ozone.”

5.     Le Mouël et al., 2017     [S]olar activity contains an important component that has undergone clear oscillations of  ≈90  years over the past three centuries, with some small but systematic longer-term evolution of “instantaneous” period and amplitude. Half of the variance of solar activity on these time scales can be satisfactorily reproduced as the sum of a monotonous multi-secular increase, a  ≈90 -year Gleissberg cycle, and a double-peaked (≈10.0  and 11.0 years) Schwabe cycle (the sum amounts to 46% of the total variance of the signal). The Gleissberg-cycle component definitely needs to be addressed when attempting to build dynamo models of solar activity. The first SSA component offers evidence of an increasing long-term trend in sunspot numbers, which is compatible with the existence of the modern grand maximum.

6.     Wen et al., 2017     “A warmer and wetter climate prevailed since ∼4800 a BP and was interrupted by a sharp cold reversal at approximately 3300 a BP that was likely caused by solar irradiance forcing, which resulted in a global cold climatic change and glacier advance.”

7.      Munz et al., 2017     “Decadal resolution record of Oman upwelling indicates solar forcing of the Indian summer monsoon (9–6 ka) … We use geochemical parameters, transfer functions of planktic foraminiferal assemblages and Mg /  Ca palaeothermometry, and find evidence corroborating previous studies showing that upwelling intensity varies significantly in coherence with solar sunspot cycles. The dominant  ∼  80–90-year Gleissberg cycle apparently also affected bottom-water oxygen conditions.”

8.     Allan et al., 2017     “Speleothem is now regarded as valuable archive of climatic conditions on the continents, offering a number of advantages relative to other continental climate proxy recorders such as lake sediments and peat cores. … [T]race elements in speleothems have the potential to provide high resolution insights into palaeoclimatic variability during the Holocene. A deeper analysis reveals several periods of significant rapid climate change during the Holocene (at 10.7-9.2 ka, 8.2-7.9 ka, 7.2-6.2 ka, 4.8-4.5 ka, and 3-2.4 ka BP), which are similar to the cold events detected from different natural paleoclimate archivers. A comparison between the geochemical analysis of Père Noël speleothem and solar activity (sunspot number) reveals a significant correlation. Spectral analysis methods reveal common solar periodicities (Gleissberg cycle, de Vries cycle, unnamed 500 year, Eddy cycles, and Hallstatt cycle). The geochemical analyses have the potential to prove that PN speleothem is sensitive to changes in solar activity on centennial and millennial timescales during the Holocene.”

9.     Woodson et al., 2017     “The last ca. 1000 years recorded the warmest SST averaging 28.5°C. We record, for the first time in this region, a cool interval, ca. 1000 years in duration, centered on 5000 cal years BP concomitant with a wet period recorded in Borneo. The record also reflects a warm interval from ca. 1000 to 500 cal years BP that may represent the Medieval Climate Anomaly. Variations in the East Asian Monsoon (EAM) and solar activity are considered as potential drivers of SST trends. However, hydrology changes related to the El Nino-Southern Oscillation (ENSO) variability, ~ shifts of the Western Pacific Warm Pool and migration of the Intertropical Convergence Zone are more likely to have impacted our SST temporal trend. …  The SA [solar activity] trends (Steinhilber et al., 2012) are in general agreement with the regional cooling of SST (Linsley et al., 2010) and the SA [solar activity] oscillations are roughly coincident with the major excursions in our SST data.”

10.     Li et al., 2017     “The main driving forces behind the Holocene climatic changes in the LYR [Lower Yangtze Region, East China] area are likely summer solar insolation associated with tropical or subtropical macro-scale climatic circulations such as the Intertropical Convergence Zone (ITCZ), Western Pacific Subtropical High (WPSH), and El Niño/Southern Oscillation (ENSO).”

11.    Chang et al., 2017     “The chironomid-based record from Heihai Lake shows a summer temperature fluctuation within 2.4°C in the last c. 5000 years from the south-east margin of the QTP [Qinghai–Tibetan Plateau]. … The summer temperature changes in this region respond primarily to the variation in the Asian Summer Monsoon. The variability of solar activity is likely an important driver of summer temperatures, either directly or by modifying the strength and intensity of the Indian Ocean Summer Monsoon. … We observed a relatively long-lasting summer cooling episode (c. 0.8°C lower than the 5000-year average) between c. 270 cal. BP and AD c. 1956. … The record shows cooling episodes occurred at c. 3100, 2600, 2100 and 1600 cal. BP.  This is likely related to the period defined as the Northern Hemisphere Little Ice Age (LIA; c. AD 1350–1850, equivalent to 600–100 cal. BP). These possibly relate to the 500-year quasi-periodic solar cycle. Cooling stages between c. 270 and 100 cal. BP were also recorded and these are possibly linked to the LIA suggesting a hemisphere-wide forcing mechanism for this event.”

12.     Lei et al., 2017     “The precipitation variability on decadal to multi-centurial generally always reflects changes in solar activity and large-scale circulation, e.g., the ENSO and the EASM [East Asian Summer Monsoon] (Chen et al., 2011; Vleeschouwer et al., 2012; Feng et al., 2014). [D]uring the MWP [Medieval Warm Period], the wetter climate in this region was consistent with more frequent ENSO events, stronger EASM and higher solar activity, whereas the opposite was found for the LIA. In particular, d13Cac fluctuations on multi-decadal to centennial scales is consistent with the changes in solar activity, with fewer dry intervals corresponding to periods of minimum solar activity within dating errors, which are referred to as the Oort Minimum (AD 1010-1050), Wolf Minimum (AD 1280-1340), Sporer Minimum (AD 1420-1530), Maunder Minimum (AD 1645-1715) and Dalton Minimum (AD 1795-1820). These results suggest that climate change in southeastern China is sensitive to ENSO and the EASM, which may be driven by solar activity.”

13.     Zhang et al., 2017     “The record suggests the summer temperature varies by ~2.5 °C across the entire period. A generally warmer period occurred between c.8500 and c.6000 cal yr BP and a cooling trend was initiated from c.5500 cal yr BP. The overall pattern broadly matches the summer insolation at 30N and the Asian Summer Monsoon records from the surrounding regions suggesting that summer temperatures from the southeast margin of the QTP respond to insolation forcing and monsoon driven variability on a multi-millennial time scale. Modifications of this overall trend are observed on the finer temporal resolution and we suggest that solar activity could be an important mechanism driving the centennial-scale variability. It may have a strengthened effect in the late Holocene when the monsoon influence weakened.”

14.     Luoto and Nevalainen, 2017     “Here,http://notrickszone.com/wp-content/uploads/2017/05/Holocene-Cooling-Greenland-Ice-Sheet-Zhang-2017.jpg we use completely synchronized paleolimnological proxy-based records of air temperature and effective precipitation from two Scandinavian lakes with ∼2000-year sediment profiles. We show that the relationship between air temperature and precipitation (T/P ratio) is synchronous in both study sites throughout the records suggesting warm and dry conditions at ∼300–1100 CE and cold and wet conditions at ∼1200–1900 CE. Owing to the significantly increased air temperatures, the most recent T/P ratio has again turned positive. During the first millennium of the Common Era, the T/P mimics patterns in Southern Oscillation index, whereas the second millennium shows response to the NAO index but is also concurrent with solar irradiance shifts[T]he causes for the LIA [Little Ice Age [1200-1900 CE], are not well defined owing to its highly variable nature (Wanner et al. 2011; Luoto and Nevalainen 2016; Zawiska et al. 2017). Yet, in addition to a persistent strongly negative NAO index phase during the LIA, it was most likely forced by decreased solar irradiance (including Spörer, Maunder and Dalton solar minima), increased volcanic activity (aerosols), and changes in Atlantic Ocean circulation patterns (Grove 2001; Goosse et al. 2005; Wanner et al. 2011).”

15.     Li et al., 2017     “Correlations between paleotemperature records from the North Atlantic and solar activity suggest that changes in solar output may cause significant shifts in the climate of the North Atlantic region. To test the role of solar activity on summer SST at our study site in West Greenland, we conducted a cross-correlation analysis between our reconstructed summer SST record and a total solar irradiance (TSI) series. The results indicate that the maximum correlation coefficient (0.284) of summer SST [sea surface temperatures] and TSI [total solar irradiance] records is obtained at nearly zero time-lag (-6 time-lag), which means that variations in solar activity affected the summer SST variability in the study area. … A significant positive relationship between summer SSTs on the North Icelandic shelf and solar irradiance reconstructed from 10Be and 14C records during the Holocene was also demonstrated by Jiang et al. This finding is also supported by recent climate model simulations using the Community Climate System Model version 4 (CCSM4). The model results show a strong positive correlation between SST and solar irradiance in the pathway of the IC, indicating that a reduced frequency of Atlantic blocking events during periods of high solar irradiance promotes warmer and saltier conditions in the pathway of the IC due to stronger circulation of the subpolar gyre. … Spectral analyses indicate that significant centennial-scale variations are superimposed on the long-term orbital trend. The dominant periodicities are 529, 410, and 191 years, which may be linked to the well-known 512- and 206-year solar cycles. Cross-correlation analyses between the summer SSTs and total solar irradiance through the last 5000 years indicate that the records are in phase, providing evidence that variations in solar activity impacted regional summer SST variability. Overall, the strong linkage between solar variability and summer SSTs is not only of regional significance, but is also consistent over the entire North Atlantic region.”

16.     Orme et al., 2017     “The north-south index shows that storm tracks moved from a southern position to higher latitudes over the past 4000 yr, likely driven by a change from meridional to zonal atmospheric circulation, associated with a negative to positive North Atlantic Oscillation shift. We suggest that gradual polar cooling (caused by decreasing solar insolation in summer and amplified by sea-ice feedbacks) and mid-latitude warming (caused by increasing winter insolation) drove a steepening of the winter latitudinal temperature gradient through the late Holocene, resulting in the observed change to a more northern winter storm track.”

17.     Serykh and Sonechkin, 2017     “The global climate is a quasi-periodically forced dynamic system [1, 2]. In addition to the annual cycle of the heat transport from the Sun and the diurnal cycle of the Earth’s rotation, other external periodical forces exist, which are potentially able to cause climate fluctuations. The lunar and solar tides are such causes on the time scales of the order of one day. On the decadal scale, these causes are 11-year variations in the Sun spots (the Wolf cycle) and its double period manifested in the changes in the heliospheric field polarity (the Hale cycle). The existence of secular solar cycles is also possible (Gleissberg and Suess cycles found in a number of Sun spots). Calculations indicate that an approximately 180-year cycle exists in the rotation of the Sun around the center of mass of the Solar system. The authors of [3] suggest that it is related to the sequence of significant decreases in the solar activity in the last millennium known as the Oort, Wolf, Spörer, Maunder, and Dalton periods. Paleoclimatic evidence of climate cooling during these periods exists. We can conclude on this basis that the ONI [ENSO index] dynamics [are] governed predominantly by two periodical external forces (the annual heat transport to the climatic system from the Sun and the Chandler wobble of the Earth’s poles) and that the system is not chaotic. This fact indicates that a principal possibility exists for long-term (many years in advance) ENSO forecasts.”

18.     Kitaba et al., 2017     “The weakening of the geomagnetic field causes an increase in galactic cosmic ray (GCR) flux. Some researchers argue that enhanced GCR flux might lead to a climatic cooling by increasing low cloud formation, which enhances albedo (umbrella effect). Recent studies have reported geological evidence for a link between weakened geomagnetic field and climatic cooling. … Greater terrestrial cooling indicates that a reduction of insolation [solar radiation reaching the surface] is playing a key role in the link between the weakening of the geomagnetic field and climatic cooling. The most likely candidate for the mechanism seems to be the increased albedo of the umbrella effect.”

19.     Perșoiu et al., 2017     “Throughout the Holocene, the subterranean ice block in Scărișoara Ice Cave responded sensitively to changes in both winter temperature and moisture source. During this time period, winter temperature in ECE [East Central Europe] was mainly controlled by insolation [solar radiation] changes. The interplay between insolation variability, SST changes in the North Atlantic, and the influence of the lingering Laurentide Ice Sheet modulated the dynamics of large-scale atmospheric circulation.”

20.     Luthardt and Rößler     “The 11 yr solar cycle, also known as Schwabe cycle, represents the smallest-scaled solar cyclicity and is traced back to sunspot activity (Douglass, 1928; Lean, 2000), which has a measurable effect on the Earth’s climate, as indicated by the Maunder minimum (Usoskin et al., 2015). Global climate feedback reactions to solar irradiance variations caused by sunspots are complex and hypothesized to be triggered by (1) variation in total energy input (Cubasch and Voss, 2000), (2) the influence of ultraviolet light intensity variation on composition of the stratosphere (Lean and Rind, 2001), (3) the effect of cosmic rays on cloud formation (Marsh and Svensmark, 2000; Sun and Bradley, 2002), and/or (4) the effect of high-energy particles on the strato- and mesosphere (Jackman et al., 2005). …  [L]ike today, sunspot activity caused fluctuations of cosmic radiation input to the atmosphere, affecting cloud formation and annual rates of precipitation
  This article appeared on the NoTricksZone website at http://notrickszone.com/2017/06/12/20-more-new-papers-link-solar-forcing-to-climate-change-now-80-sun-climate-papers-for-2017/]]>

Join our effort to build a greener future.